direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C42.C2, C22.21C24, C42.88C22, C23.71C23, C4.9(C2×Q8), (C2×C4).22Q8, C2.4(C22×Q8), C4⋊C4.69C22, (C2×C42).18C2, (C2×C4).14C23, C22.18(C2×Q8), C22.33(C4○D4), (C22×C4).59C22, (C2×C4⋊C4).18C2, C2.10(C2×C4○D4), SmallGroup(64,208)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C42.C2
G = < a,b,c,d | a2=b4=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc2, dcd-1=b2c >
Subgroups: 137 in 113 conjugacy classes, 89 normal (7 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C22×C4, C2×C42, C2×C4⋊C4, C42.C2, C2×C42.C2
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C42.C2, C22×Q8, C2×C4○D4, C2×C42.C2
Character table of C2×C42.C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 4T | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | -2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2i | -2i | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 25)(2 26)(3 27)(4 28)(5 39)(6 40)(7 37)(8 38)(9 15)(10 16)(11 13)(12 14)(17 29)(18 30)(19 31)(20 32)(21 46)(22 47)(23 48)(24 45)(33 44)(34 41)(35 42)(36 43)(49 60)(50 57)(51 58)(52 59)(53 64)(54 61)(55 62)(56 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 11 5)(2 32 12 6)(3 29 9 7)(4 30 10 8)(13 39 25 19)(14 40 26 20)(15 37 27 17)(16 38 28 18)(21 57 54 34)(22 58 55 35)(23 59 56 36)(24 60 53 33)(41 46 50 61)(42 47 51 62)(43 48 52 63)(44 45 49 64)
(1 36 11 59)(2 60 12 33)(3 34 9 57)(4 58 10 35)(5 54 31 21)(6 22 32 55)(7 56 29 23)(8 24 30 53)(13 52 25 43)(14 44 26 49)(15 50 27 41)(16 42 28 51)(17 48 37 63)(18 64 38 45)(19 46 39 61)(20 62 40 47)
G:=sub<Sym(64)| (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,29)(18,30)(19,31)(20,32)(21,46)(22,47)(23,48)(24,45)(33,44)(34,41)(35,42)(36,43)(49,60)(50,57)(51,58)(52,59)(53,64)(54,61)(55,62)(56,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,11,5)(2,32,12,6)(3,29,9,7)(4,30,10,8)(13,39,25,19)(14,40,26,20)(15,37,27,17)(16,38,28,18)(21,57,54,34)(22,58,55,35)(23,59,56,36)(24,60,53,33)(41,46,50,61)(42,47,51,62)(43,48,52,63)(44,45,49,64), (1,36,11,59)(2,60,12,33)(3,34,9,57)(4,58,10,35)(5,54,31,21)(6,22,32,55)(7,56,29,23)(8,24,30,53)(13,52,25,43)(14,44,26,49)(15,50,27,41)(16,42,28,51)(17,48,37,63)(18,64,38,45)(19,46,39,61)(20,62,40,47)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,29)(18,30)(19,31)(20,32)(21,46)(22,47)(23,48)(24,45)(33,44)(34,41)(35,42)(36,43)(49,60)(50,57)(51,58)(52,59)(53,64)(54,61)(55,62)(56,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,11,5)(2,32,12,6)(3,29,9,7)(4,30,10,8)(13,39,25,19)(14,40,26,20)(15,37,27,17)(16,38,28,18)(21,57,54,34)(22,58,55,35)(23,59,56,36)(24,60,53,33)(41,46,50,61)(42,47,51,62)(43,48,52,63)(44,45,49,64), (1,36,11,59)(2,60,12,33)(3,34,9,57)(4,58,10,35)(5,54,31,21)(6,22,32,55)(7,56,29,23)(8,24,30,53)(13,52,25,43)(14,44,26,49)(15,50,27,41)(16,42,28,51)(17,48,37,63)(18,64,38,45)(19,46,39,61)(20,62,40,47) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,39),(6,40),(7,37),(8,38),(9,15),(10,16),(11,13),(12,14),(17,29),(18,30),(19,31),(20,32),(21,46),(22,47),(23,48),(24,45),(33,44),(34,41),(35,42),(36,43),(49,60),(50,57),(51,58),(52,59),(53,64),(54,61),(55,62),(56,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,11,5),(2,32,12,6),(3,29,9,7),(4,30,10,8),(13,39,25,19),(14,40,26,20),(15,37,27,17),(16,38,28,18),(21,57,54,34),(22,58,55,35),(23,59,56,36),(24,60,53,33),(41,46,50,61),(42,47,51,62),(43,48,52,63),(44,45,49,64)], [(1,36,11,59),(2,60,12,33),(3,34,9,57),(4,58,10,35),(5,54,31,21),(6,22,32,55),(7,56,29,23),(8,24,30,53),(13,52,25,43),(14,44,26,49),(15,50,27,41),(16,42,28,51),(17,48,37,63),(18,64,38,45),(19,46,39,61),(20,62,40,47)]])
C2×C42.C2 is a maximal subgroup of
C42.396D4 C42.408D4 C42.71D4 C42.123D4 C42.437D4 C42.124D4 C42.128D4 C4⋊C4.84D4 C4⋊C4.85D4 C2.(C8⋊Q8) C42.33Q8 C23.218C24 C23.252C24 C23.253C24 C23.264C24 C24.268C23 C24.569C23 C23.353C24 C23.354C24 C23.360C24 C23.362C24 C24.572C23 C23.375C24 C24.301C23 C23.390C24 C23.406C24 C23.419C24 C42⋊6Q8 C42.35Q8 C23.456C24 C23.458C24 C42.172D4 C42.174D4 C42.175D4 C42.181D4 C42.185D4 C42.188D4 C42.190D4 C42.191D4 C42.194D4 C42.195D4 C42⋊10Q8 C42.198D4 C23.590C24 C24.401C23 C24.408C23 C23.607C24 C23.611C24 C23.613C24 C23.619C24 C23.620C24 C23.621C24 C23.625C24 C23.626C24 C42.199D4 C42.201D4 C42.439D4 C43.15C2 C43⋊14C2 C42.449D4 C42.244D4 M4(2)⋊6Q8 C42.284D4 C42.286D4 C42.288D4 C22.93C25 C22.101C25 C22.104C25 C22.142C25 C22.148C25 C22.152C25
C2×C42.C2 is a maximal quotient of
C42.34Q8 C24.569C23 C24.572C23 C23.405C24 C23.406C24 C23.407C24 C23.408C24 C23.409C24 C42.35Q8 C24.584C23 C42.36Q8 C42.37Q8 C23.546C24 C42.39Q8 C42.439D4 C43.15C2 C43.18C2
Matrix representation of C2×C42.C2 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 4 | 0 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3],[1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,4,0] >;
C2×C42.C2 in GAP, Magma, Sage, TeX
C_2\times C_4^2.C_2
% in TeX
G:=Group("C2xC4^2.C2");
// GroupNames label
G:=SmallGroup(64,208);
// by ID
G=gap.SmallGroup(64,208);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,96,217,199,650,86]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^2,d*c*d^-1=b^2*c>;
// generators/relations
Export